

Harmonization and Emerging Codes and Standards

Claude FAIDY EPERC Chairman

Claude.faidy@gmail.com Phone: +33 6 1410 11 19

<u>Rev. 0</u>

Content

- ✓ Short introduction:
 - why harmonization?
 - Why Code updating?
 - Few Example?
- √ Tools
- ✓ Procedures
- √ 2015-2020 International Working Program
 - To-day and Future topics
 - Synthesis
- Few examples of French Code Updating
- ✓ How EPERC can play a role?

www.eperc-aisbl.eu

Introduction: why Harmonization and Code updating?

- Design, Construction and In-service Codes for Nuclear Mechanical components have to be regularly updated, in order to:
 - Be in accordance with New Techniques and State Of the Art
 - Integrate Field Experience
 - Fulfill new Regulatory requirements (National and International)
 - Fulfill new Utility requirements
 - Answer to on-going and future Projects needs
 - Prepare answers for future new Reactor technology
 - Reduce future International Codes divergence-Facilitate areas of convergence

Few Examples (1/2)

New techniques and State Of the Art, like:

Design: static-cyclic-dynamic non linear analyses and associated strain

criteria; bolted flange and leak tightness objectives; flaw tolerance of

pressure boundary; extreme external hazard consideration...

Material: new material, non-metallic materialNDE: replace RT by UT, new techniques

Welding: new techniques

Operation: ISI performance, flaw acceptance methods, partial safety

factors, risk informed, repair techniques, LTO

Dismantlement

Regulatory requirements, like:

- Unbreakable components, Incredibility of Failure, High Integrity Components
- Quality of large forged pieces
- Pre-service inspection and maximum allowable defects
- "Inspectability" of all welds
- Non metallic piping: HDPE
- Non-nuclear / nuclear classified components
- Pressure Test
- Overpressure protection

Few Examples (2/2)

- ✓ Fulfill new Utility requirements, like:
 - Consider LTO and dismantlement at the Design stage
 - Consider more Maintenance and Radioprotection at the Design stage
 - Consider largely the field experience (national and international)
- Answer to on-going and future Projects needs
 - Case by case
- Prepare answers for future new Reactor technology
 - Different HTRs
 - Fusion Reactors
 - Experimental
 - SMR ...

available tools used for Nuclear Codes ... (1/3)

MDEP CSWG and VICWG www.oecd-nea.org/mdep

Group of Industry: Vendors, Manufacturers, Utilities and their Technical Supports

> WNA - CORDEL CSTF EPERC

Code Development Organization

USA-Japan-France-Korea-Canada-Russia

ASME-JSME- AFCEN -KEPIC-CSA-ROSATOM

Soon: China Nucl Code, UK Struct Integr Coder; CZECH Nuclear Codes

Standard Development Organization

Minimize Future Code DivergenceFacilitate Areas of Convergence

the available procedure ... (2/3)

On selected topics by Industry or Code Organization

- 1. Detailed Comparison of existing Codes: nuclear + non nuclear
- 2. Identify: Gaps and Needs
- 3. <u>International review of corresponding report by each Code Org.</u>
- Recommended practice document associated with validation for each proposal
- 5. International **Benchmarks** on "realistic" cases
- 6. Final "International Harmonized" Code Case
- 7. Large international <u>participation</u> & <u>review</u> of 4-5-6 by <u>Code Organizations</u> and <u>International Expert Groups</u>

the available procedure ... (3/3)

✓ Procedure Successfully applied for:

- Class 1 component design rules
- NDE personal qualification
- Welding qualification

✓ On-going by Industry Group for:

- Non-linear design rules for :
 - plastic collapse, plastic instability, local failure, K_e and fatigue and plastic shakedown / ratchetting
 - Code comparison available
 - Recommended practice
 - Benchmarking
- Fatigue design Rules
 - Air fatigue rules
 - Environment Effect end of 2019
 - Fatigue crack growth2019

www.eperc-aisbl.eu

New Topics proposal for 2018-2020 (1/2)

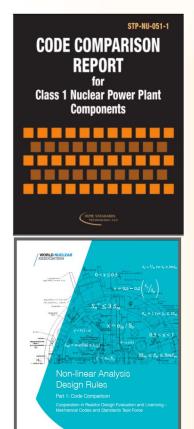
- ✓ 1. Pressure test : international practices
 - end of Fabrication,
 - in Operation, after Repair/ Replacement
- ✓ 2. Weld Residual Stress distribution and consequences
 - Fabrication
 - Repair/ Replacement
- ✓ 3. Verification and Validation of Mechanical Computer Codes
- ✓ 4. Micro-segregation in forged pieces
 - Belgium flaking
 - French Heterogeneity
- ✓ 5. Alternative to Radiographic NDT end of fabrication (TBC)

New Topic proposals for 2018-2020 (2/2)

Gaps and Needs
in front of
existing Code Requirements
and Field Experience

"Reconciliation":

"the process of
making consistent or compatible"
Different Codes


For Example for micro-segregation

- √ 1- Regulation requirements and precise reference
- ✓ 2- Code requirements and precise reference
- √ 3- Design specification requirements?
- 4- Have you encountered "heterogeneity"?
 If yes, explain the root cause

www.eperc-aisbl.eu

Examples of Comparison of Topics

ASME-JSME-AFCEN -KEPIC-CSA-NIKIET-KTA*-China*
• case by case
+ EN13445 and
ASME VIII-Div. 2

April 1-3, 2019

2019 1st EPERC International Conference - Roma

Synthesis (1/2)

- ✓ An International Program with proposals on new topics is now available, slightly difficult to run...
- Regulators put their comments last April 2018 around a dedicated meeting:
 - Move from "harmonization", "convergence" to "Code reconciliation" with a clear understanding of the background of differences
 - Maintain the actual scope: identification and background understanding of the differences, proposal of best practices, but move to Code "reconciliation"; instead of "harmonization" or "convergence"

Synthesis (2/2)

- Enlarge the actual scope of your work:
 - From class 1 thick forging components of LWR to: all class 1 aspects of LWR, HTR, SMR, Experimental Reactors
 - Consider Design, Fabrication and Operation
- Become more pro-active on existing Code modifications or new codes
 - new = complete re-writting
 - or new topics
 - or new technologies (as SMR's)
- Consider differences on Standards and Prescriptive level (design specification...)
- Consider Quality Management Systems, in particular personnel homologation and qualification/qualification complement and renewal, as RPE, SQEP, NAFEMS...

FEW EXAMPLES OF UPDATING AND NEEDS ON FRENCH NUCLEAR MECHANICAL CODES (END 2018)

RCC-M Design, Fabrication, Tests and Protection of PWRs

RSE-M In-service Inspection Rules of PWRs

RCC-MRx rules for Research Reactor components, HTR,

and Fusion Reactor

Some key example RCC-M developments (1/4)

- ✓ Design: supported by dedicated Guides 2017 2018
 - Risk analysis
 - All potential damages for given Operating Conditions
 - To be developed by Manufacturer and accepted by notified bodies before "starting fabrication"
 - Instruction notice
 - Guideline for operation following end of Design, Fabrication and Protection
 - To be developed by Manufacturer and accepted by notified bodies before "end of fabrication" stamp
- ✓ Design: Environmental effects in fatigue (2016)
 - 3 RPP (or Code Cases)
 - RPP#1. fatigue design curve for austenitic stainless steels and nickel base alloys.
 - RPP#2. instruction to apply RPP#3 on how to include EAF (Fen integrated factor) with optimization of Fen factor with surface finish effects
 - RPP#3. EAF methodology necessarily used with RR-1 and 2

Note: all the rules for "Break Exclusion" analyses
(not basic LBB) are described in SAR and dedicated Guide
for Analysis, using many References to RCC-M and RSE-M

Some key example RCC-M developments (2/4)

- ✓ Design: Non linear Design Rules (2017)
 - Non-mandatory App. ZC for FEA using non linear material properties
 - Limit load analyses or Elastic-plastic analysis for:
 - Excessive deformation (plastic collapse)
 - Plastic instability (outside of buckling)
 - Fatigue analyses:
 - o plasticity amplification factor Ke
 - Cycle by cycle analyses have to be consistent with ratcheting analyses (on-going)
 - Fracture analyses
- Design: Unacceptable Fabrication Defect for Structural Integrity (2017)
 - Non-mandatory App. ZP
 - Analyze of "Technology defects" for all the component life and performance of Fabrication NDE
 - Definition of the Defects by the Manufacturer
 - Supplement requirement to fracture analyses of Class 1 Components
 - Not to Justify defects in Fabrication or in Operation

European Pressure Equipment Research Counci<mark>S</mark>ome key examples RCC-M developments (3/4)

✓ Welding

- Introduction in Appendix S IV of a formal definition of welding coordination following definition of EN ISO 14731
- Appendix may be satisfied by implementing a quality system fulfilling the requirements of NF EN ISO 3834-2 [12], but formal certification to this standard is not required. Other equivalent standards may also be used to reach that goal,
- Introduction of the new ISO standards for the welders (ISO 9606-1) and operators (ISO 14732 qualification

✓ Examination (2016)

- Alternative techniques to radiography: introduction of advanced UT (phased arrays and TOFD). The instruction file to modify the code covers:
 - the methods for advanced UT
 - and also gives criteria for showing equivalent capability of the examination.
- After tests and analysis, the code bases for case by case acceptation of alternative methods
 - must demonstrate complete equivalence,
 - and must be accepted by the customer.

Some key examples RCC-M developments (4/4)

- ✓ Qualification of active mechanical equipment RPP#4 (2017)
 - General rules for qualification and Documentation
 - Qualification perenity
 - Specific rules for valves Qualification Procedure:
 - For normal operating conditions
 - Seismic qualification
 - For accidental conditions with degraded ambiance
 - For thermo-hydraulic accidental conditions
 - For conditions of charged active water
 - For severe accident
 - Specific rules for pumps
 - Consistent with Electrical Component qualification and International Standards (QME)

More Information in PVP2018-84409

Some key examples RSE-M developments

- New Class 1 Hydrotest Pressure for International use
- Updating of applicable standards, codes, guides (Appendix 1.3)
- Surveillance in operation; Complement of the articles "to be published" (§ 6000, § 7000) for EPR application
- Inspection of pressure accessories and safety accessories
- > Examination methods used for visits; revision of § B 4000,
- Non-destructive testing methods for surveillance and inspection; Update of Appendix 4.4
- Maintenance Activities classification
- > Further improvement of
 - □ Flaw evaluation methods (appendix 5.4), as "WarmPrestressing"
 - □ Material data (Appendix 5.6) in particular through the development of "EPR" materials, as data for carbon-manganese steels...

Some key examples RCC-MRx developments (1/2)

- More connected to Project needs: ASTRID, Jules Horowitz Reactor or ITER, but also needs of innovative projects such as MYRRHA (experimental lead-cooled fast reactor _ Belgium) or ESS (European Spallation Source – Sweden)
- ✓ Guideline to introduce new materials in RCC-MRx
 - In particular Materials codified in other Standards
- √ 2 examples for ASTRID
 - 18MND5 for slab
 - RCC-M material that needs to be supplemented to RCC-MRx material properties
 - Include the EPR experience with Procurement and Fab rication
 - 2 procurement specifications: RPS-G 212-2 and 212-3
 - Material properties in A3.12AS
 - Charpy impact test criteria for stainless steel 316 L(N), from RCC-M
 - KU and KV
 - Base material (wrought) type 316 L(N) butt 316 &304 too,
 - Auusteno-ferriticc weld deposit metal (19Cr12Ni2Mo + others)
 - No tests in HAZ
 - Annnealed and after thermal ageing conditions.

Some key examples RCC-MRx developments (2/2)

- ✓ Clarification of the scope: "Irradiation"
 - A better understanding of the damage,
 - A better definition of the methodology used for the rule and for border curves
 - Consolidation of data used for design.
 - clarification on the nature of the irradiation
 - re-interpretation of the database used
- Clarification on the applicability of the code to innovative installations
 - guide a potential user by giving him tools to adapt or to develop the code.
- Harmonization actions
 - With RCC-M common domain (pressure, low temperature, low REC 3253.1 Manufacturing processes: section 3.1, irradiation)

More Information in PVP2018-84706

April 1-3, 2019

2019 1st EPERC International Conference - Roma

21

www.eperc-aisbl.eu

How EPERC can play a role ???

- Emerging and Harmonization of PE Codes & Standards
- ✓ Nuclear, Non-nuclear and other Industry Sector
- ✓ Technical comparison of International Codes & Standards
- ✓ Understanding of differences
- New needs for innovation
 - Next reactors, including Experimental
 - New renewable plants
 - New users of PE from different Industry Sectors: to-day more than 30 CEN PE Technical Committees
 - Find common topics? Common rules? Common R&D programs?
 - New operating condition and consequences
- ✓ Develop R&D programs and associated Road Maps
 - Share part of them at International level
- ✓ Develop "Recommended Practices"
- Transfer knowledge, Benchmark, Training...

Thanks for your Attention!

Open for Questions!